Project Euler | Problem 11 | Largest product in a grid
Problem Description:
08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48
49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48
What is the greatest product of four adjacent numbers in the same direction (up, down, left, right, or diagonally) in the 20×20 grid?
Concept:
Store 20 X 20 grid in two-dimensional array and consider following 8 cases to solve this problem.
- When i < 3 && j < 3 - Get product of four adjacent numbers in right, bottom and bottom right diagonal side.
- When i < 3 && (j >= 3 && j < 17) - Get product of four adjacent numbers in right, left, bottom, bottom right diagonal and bottom left diagonal side.
- When i < 3 && j >= 17 - Get product of four adjacent numbers in left, bottom and bottom left diagonal side.
- When (i >= 3 && i < 17) && j < 3 - Get product of four adjacent numbers in right, bottom, up, bottom right diagonal and up right diagonal side.
- When i >= 17 && j < 3 - Get product of four adjacent numbers in right, up, up right diagonal side.
- When (i >= 3 && i < 17) && (j >= 3 && j < 17) - Get product of four adjacent numbers in right, left, bottom, up, bottom right diagonal, bottom left diagonal, up right diagonal and up left diagonal side.
- When i >= 17 && (j >= 3 && j < 17) - Get product of four adjacent numbers in right, left, up, up right diagonal and up left diagonal side.
- When i >= 17 && j >= 17 - Get product of four adjacent numbers in left, up and up left diagonal side.
Now w.r.t each case we need to find greatest product in particular direction and finally we will get greatest product of four adjacent numbers in same direction (up, down, left, right, or diagonally) in the 20 X 20 grid.
Java Program :
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
package com.javamultiplex.projecteuler; | |
import java.util.ArrayList; | |
import java.util.Collections; | |
import java.util.List; | |
/** | |
* | |
* @author Rohit Agarwal | |
* @category Project Euler Problems | |
* @Problem 11 - Largest product in a grid. | |
* | |
*/ | |
public class Problem11 { | |
public static void main(String[] args) { | |
long[][] grid = { | |
{ 8, 2, 22, 97, 38, 15, 0, 40, 0, 75, 4, 5, 7, 78, 52, 12, 50, 77, 91, 8 }, | |
{ 49, 49, 99, 40, 17, 81, 18, 57, 60, 87, 17, 40, 98, 43, 69, 48, 4, 56, 62, 0 }, | |
{ 81, 49, 31, 73, 55, 79, 14, 29, 93, 71, 40, 67, 53, 88, 30, 3, 49, 13, 36, 65 }, | |
{ 52, 70, 95, 23, 4, 60, 11, 42, 69, 24, 68, 56, 1, 32, 56, 71, 37, 2, 36, 91 }, | |
{ 22, 31, 16, 71, 51, 67, 63, 89, 41, 92, 36, 54, 22, 40, 40, 28, 66, 33, 13, 80 }, | |
{ 24, 47, 32, 60, 99, 3, 45, 2, 44, 75, 33, 53, 78, 36, 84, 20, 35, 17, 12, 50 }, | |
{ 32, 98, 81, 28, 64, 23, 67, 10, 26, 38, 40, 67, 59, 54, 70, 66, 18, 38, 64, 70 }, | |
{ 67, 26, 20, 68, 2, 62, 12, 20, 95, 63, 94, 39, 63, 8, 40, 91, 66, 49, 94, 21 }, | |
{ 24, 55, 58, 5, 66, 73, 99, 26, 97, 17, 78, 78, 96, 83, 14, 88, 34, 89, 63, 72 }, | |
{ 21, 36, 23, 9, 75, 0, 76, 44, 20, 45, 35, 14, 0, 61, 33, 97, 34, 31, 33, 95 }, | |
{ 78, 17, 53, 28, 22, 75, 31, 67, 15, 94, 3, 80, 4, 62, 16, 14, 9, 53, 56, 92 }, | |
{ 16, 39, 5, 42, 96, 35, 31, 47, 55, 58, 88, 24, 0, 17, 54, 24, 36, 29, 85, 57 }, | |
{ 86, 56, 0, 48, 35, 71, 89, 07, 05, 44, 44, 37, 44, 60, 21, 58, 51, 54, 17, 58 }, | |
{ 19, 80, 81, 68, 5, 94, 47, 69, 28, 73, 92, 13, 86, 52, 17, 77, 4, 89, 55, 40 }, | |
{ 4, 52, 8, 83, 97, 35, 99, 16, 07, 97, 57, 32, 16, 26, 26, 79, 33, 27, 98, 66 }, | |
{ 88, 36, 68, 87, 57, 62, 20, 72, 3, 46, 33, 67, 46, 55, 12, 32, 63, 93, 53, 69 }, | |
{ 4, 42, 16, 73, 38, 25, 39, 11, 24, 94, 72, 18, 8, 46, 29, 32, 40, 62, 76, 36 }, | |
{ 20, 69, 36, 41, 72, 30, 23, 88, 34, 62, 99, 69, 82, 67, 59, 85, 74, 4, 36, 16 }, | |
{ 20, 73, 35, 29, 78, 31, 90, 1, 74, 31, 49, 71, 48, 86, 81, 16, 23, 57, 5, 54 }, | |
{ 1, 70, 54, 71, 83, 51, 54, 69, 16, 92, 33, 48, 61, 43, 52, 1, 89, 19, 67, 48 } | |
}; | |
long right = 0, left = 0, bottom = 0, up = 0, bottomRightDiagonal = 0, bottomLeftDiagonal = 0, upRightDiagonal = 0, upLeftDiagonal = 0; | |
long max = 0; | |
long[] array = new long[8]; | |
List<Long> list = new ArrayList<>(); | |
for (int i = 0; i < 20; i++) { | |
for (int j = 0; j < 20; j++) { | |
right = 0; | |
left = 0; | |
bottom = 0; | |
up = 0; | |
bottomRightDiagonal = 0; | |
bottomLeftDiagonal = 0; | |
upRightDiagonal = 0; | |
upLeftDiagonal = 0; | |
//case 1 | |
if (i < 3 && j < 3) { | |
right = getRightSideMultiplication(grid, i, j); | |
bottom = getBottomSideMultiplication(grid, i, j); | |
bottomRightDiagonal = getBottomRightDiagonalMultiplication( | |
grid, i, j); | |
} | |
//case 2 | |
else if (i < 3 && (j >= 3 && j < 17)) { | |
right = getRightSideMultiplication(grid, i, j); | |
left = getLeftSideMultiplication(grid, i, j); | |
bottom = getBottomSideMultiplication(grid, i, j); | |
bottomRightDiagonal = getBottomRightDiagonalMultiplication( | |
grid, i, j); | |
bottomLeftDiagonal = getBottomLeftDiagonalMultiplication( | |
grid, i, j); | |
} | |
//case 3 | |
else if (i < 3 && j >= 17) { | |
left = getLeftSideMultiplication(grid, i, j); | |
bottom = getBottomSideMultiplication(grid, i, j); | |
bottomLeftDiagonal = getBottomLeftDiagonalMultiplication( | |
grid, i, j); | |
} | |
//case 4 | |
else if ((i >= 3 && i < 17) && j < 3) { | |
right = getRightSideMultiplication(grid, i, j); | |
bottom = getBottomSideMultiplication(grid, i, j); | |
up = getUpSideMultiplication(grid, i, j); | |
bottomRightDiagonal = getBottomRightDiagonalMultiplication( | |
grid, i, j); | |
upRightDiagonal = getUpRightDiagonalMultiplication(grid, | |
i, j); | |
} | |
//case 5 | |
else if (i >= 17 && j < 3) { | |
right = getRightSideMultiplication(grid, i, j); | |
up = getUpSideMultiplication(grid, i, j); | |
upRightDiagonal = getUpRightDiagonalMultiplication(grid, | |
i, j); | |
} | |
//case 6 | |
else if ((i >= 3 && i < 17) && (j >= 3 && j < 17)) { | |
right = getRightSideMultiplication(grid, i, j); | |
left = getLeftSideMultiplication(grid, i, j); | |
bottom = getBottomSideMultiplication(grid, i, j); | |
up = getUpSideMultiplication(grid, i, j); | |
bottomRightDiagonal = getBottomRightDiagonalMultiplication( | |
grid, i, j); | |
bottomLeftDiagonal = getBottomLeftDiagonalMultiplication( | |
grid, i, j); | |
upRightDiagonal = getUpRightDiagonalMultiplication(grid, | |
i, j); | |
upLeftDiagonal = getUpLeftDiagonalMultiplication(grid, i, | |
j); | |
} | |
//case 7 | |
else if (i >= 17 && (j >= 3 && j < 17)) { | |
right = getRightSideMultiplication(grid, i, j); | |
left = getLeftSideMultiplication(grid, i, j); | |
up = getUpSideMultiplication(grid, i, j); | |
upRightDiagonal = getUpRightDiagonalMultiplication(grid, | |
i, j); | |
upLeftDiagonal = getUpLeftDiagonalMultiplication(grid, i, | |
j); | |
} | |
//case 8 | |
else if (i >= 17 && j >= 17) { | |
left = getLeftSideMultiplication(grid, i, j); | |
up = getUpSideMultiplication(grid, i, j); | |
upLeftDiagonal = getUpLeftDiagonalMultiplication(grid, i, | |
j); | |
} | |
//Adding left,right,top,bottom,topRightDiagonal, topLeftDiagonal,bottomRightDiagonal,bottomLeftDiagonal side multiplication in an array. | |
array[0] = left; | |
array[1] = right; | |
array[2] = up; | |
array[3] = bottom; | |
array[4] = upRightDiagonal; | |
array[5] = upLeftDiagonal; | |
array[6] = bottomRightDiagonal; | |
array[7] = bottomLeftDiagonal; | |
//Getting max multiplication from array. | |
max = getMax(array); | |
//Adding max into list. | |
list.add(max); | |
} | |
} | |
//Sorting list elements in ascending order. | |
Collections.sort(list); | |
int size = list.size(); | |
System.out.println("The greatest product of four adjacent numbers in the same direction (up, down, left, right, or diagonally) in the 20×20 grid is : " | |
+ list.get(size - 1)); | |
} | |
private static long getMax(long[] array) { | |
long max = array[0]; | |
for (int i = 1; i < 8; i++) { | |
if (array[i] > max) { | |
max = array[i]; | |
} | |
} | |
return max; | |
} | |
public static long getRightSideMultiplication(long[][] grid, int i, int j) { | |
long temp = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] | |
* grid[i][j + 3]; | |
return temp; | |
} | |
public static long getLeftSideMultiplication(long[][] grid, int i, int j) { | |
long temp = grid[i][j] * grid[i][j - 1] * grid[i][j - 2] | |
* grid[i][j - 3]; | |
; | |
return temp; | |
} | |
public static long getUpSideMultiplication(long[][] grid, int i, int j) { | |
long temp = grid[i][j] * grid[i - 1][j] * grid[i - 2][j] | |
* grid[i - 3][j]; | |
return temp; | |
} | |
public static long getBottomSideMultiplication(long[][] grid, int i, int j) { | |
long temp = grid[i][j] * grid[i + 1][j] * grid[i + 2][j] | |
* grid[i + 3][j]; | |
return temp; | |
} | |
public static long getBottomRightDiagonalMultiplication(long[][] grid, | |
int i, int j) { | |
long temp = grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] | |
* grid[i + 3][j + 3]; | |
return temp; | |
} | |
public static long getBottomLeftDiagonalMultiplication(long[][] grid, | |
int i, int j) { | |
long temp = grid[i][j] * grid[i + 1][j - 1] * grid[i + 2][j - 2] | |
* grid[i + 3][j - 3]; | |
return temp; | |
} | |
public static long getUpRightDiagonalMultiplication(long[][] grid, int i, | |
int j) { | |
long temp = grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] | |
* grid[i - 3][j + 3]; | |
return temp; | |
} | |
public static long getUpLeftDiagonalMultiplication(long[][] grid, int i, | |
int j) { | |
long temp = grid[i][j] * grid[i - 1][j - 1] * grid[i - 2][j - 2] | |
* grid[i - 3][j - 3]; | |
return temp; | |
} | |
} |
Output:
![]() |
Figure2 |
References:
https://docs.oracle.com/javase/7/docs/api/java/util/Collections.html#sort(java.util.List)
Thank you friends, I hope you have clearly understood the solution of this problem. If you have any doubt, suggestion or query please feel free to comment below. You can also discuss this solution in our forum.
Project Euler | Problem 11 | Largest product in a grid
Reviewed by Rohit Agarwal
on
10/16/2017
Rating:

No comments:
Please provide your valuable comments. If you have any suggestion please share with me I will work on it and if you have any question or doubt please ask, don't hesitate. I am your friend, i will clarify all your doubts.